11895_Ứng dụng thuật toán fuzzy random forest trong phát hiện xâm nhập mạng không dây

luận văn tốt nghiệp

ĐẠI HỌC QUỐC GA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
————— 🙞🙞 —————

NGUYỄN VĂN LINH

ỨNG DỤNG THUẬT TOÁN FUZZY RANDOM
FOREST TRONG PHÁT HIỆN XÂM NHẬP MẠNG
KHÔNG DÂY

Ngành: Công nghệ thông tin
Chuyên ngành: Khoa học máy tính
Mã số: 60480101

LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN
NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS. Lê Hoàng Sơn

Hà Nội – 2019

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
————— 🙞🙞 —————

NGUYỄN VĂN LINH

ỨNG DỤNG THUẬT TOÁN FUZZY RANDOM
FOREST TRONG PHÁT HIỆN XÂM NHẬP MẠNG
KHÔNG DÂY

Ngành: Công nghệ thông tin
Chuyên ngành: Khoa học máy tính
Mã số: 60480101

LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN
NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS. Lê Hoàng Sơn
Xác nhận của cán bộ hướng dẫn

PGS TS. Lê Hoàng Sơn

Hà Nội – 2019

LỜI CẢM ƠN
Trước tiên, tôi xin được gửi lời cảm ơn và lòng biết ơn sâu sắc nhất tới Thầy
giáo, PGS. TS. Lê Hoàng Sơn đã tận tình chỉ bảo, hướng dẫn, động viên và giúp đỡ tôi
trong suốt quá trình tôi thực hiện luận văn tốt nghiệp.
Tôi xin gửi lời cảm ơn tới các thầy cô trường Đại Học Công Nghệ – Đại Học
Quốc Gia Hà Nội – những người đã tận tình giúp đỡ, hướng dẫn trong quá trình tôi học
tập và tại trường.
Cuối cùng, tôi muốn gửi lời cảm ơn tới gia đình và bạn bè, những người thân
yêu luôn bên cạnh, quan tâm, động viên tôi trong suốt quá trình học tập và thực hiện
luận văn tốt nghiệp này.

Tôi xin chân thành cảm ơn!


Nội,
tháng
04
năm
2019
Học viên

Nguyễn Văn Linh

LỜI CAM ĐOAN
Tôi xin cam đoan kết quả đạt được trong Luận văn là sản phẩm của riêng cá nhân
tôi, không sao chép lại của người khác. Những điều được trình bày trong nội dung Luận
văn, hoặc là của cá nhân hoặc là được tổng hợp từ nhiều nguồn tài liệu. Tất cả các tài
liệu tham khảo đều có xuất xứ rõ ràng và được trích dẫn đúng quy cách. Tôi xin hoàn
toàn chịu trách nhiệm và chịu mọi hình thức kỷ luật theo quy định cho lời cam đoan của
mình.

Hà Nội, tháng 04 năm 2019
Tác giả luận văn

Nguyễn Văn Linh

MỤC LỤC
LỜI CẢM ƠN
0
LỜI CAM ĐOAN
1
MỤC LỤC
2
DANH SÁCH BẢNG
3
DANH SÁCH HÌNH VẼ
4
DANH SÁCH TỪ VIẾT TẮT
6
1
13
1.1
13
1.2
14
1.2.1
14
1.2.2
15
1.2.3
18
1.2.4
20
1.3
22
1.3.1
23
1.3.2
27
1.3.3
30
1.4
34
1.5
34
2
35
2.1
35
2.2
37
2.3
43
2.4
47
2.5
58
2.6
80
3
81
3.1
81
3.2
87
3.3
92
3.4
92
3.1
95
KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN
85
TÀI LIỆU THAM KHẢO
87

DANH SÁCH BẢNG
Bảng 1.1 : Dữ liệu sử dụng cho phân lớp Bayes
16
Bảng 2.1: Dữ liệu phân lớp sử dụng cây quyết định
28
Bảng 2.2: Dữ liệu kiểm thử thuật toán cây quyết định
29
Bảng 2.3: Tất cả thuộc tính Sunny của Outlook
30
Bảng 2.4: Tất cả thuộc tính Rain của Outlook
31
Bảng 2.5: Bảng đánh giá và kiểm tra kết quả của thuật toán DT
32
Bảng 2.6: Tập dữ liệu phân lớp cho thuật toán RF
38
Bảng 2.7: Dữ liệu được chọn ngẫu nhiên từ tập dữ liệu ban đầu cho cây 2
39
Bảng 2.8: Dữ liệu để kiểm tra độ chính xác thuật toán RF
39
Bảng 2.9: Tất cả dữ liệu Sunny của Outlook
41
Bảng 2.10: Tất cả dữ liệu Rain của Outlook
41
Bảng 2.11: Bảng đánh dấu dữ liệu được chọn ngẫu nhiên cho cây 3
42
Bảng 2.12: Bảng dữ liệu chọn ngẫu nhiên cho cây 3
43
Bảng 2.13: Tất cả dữ liệu nhánh Strong của Wind
45
Bảng 2.14: Nhánh Sunny của Outlook nốt tiếp Strong của Wind
46
Bảng 2.15: Đánh giá kết quả thuật toán RF
47
Bảng 2.16: Dự liệu training thuật toán FRF
53
Bảng 2.17: Dữ liệu đánh giá thuật toán FRF
54
Bảng 2.18 Giá trị fuzzy của các thuộc tính
57
Bảng 2.19: Nhánh Sunny của outlook (FRF 1)
62
Bảng 2.20: Nhánh rain của outlook(FRF 1)
64
Bảng 2.23: Đánh giá kết quả cây FRF
69
Bảng 3.1: Bộ dữ liệu AWID [36] 70
Bảng 3.2: Các lớp của bộ dữ liệu AWID [36] 71
Bảng 3.3: Tỉ lệ của các bản ghi và lớp trong bộ dữ liệu
71
Bảng 3.4: Thuộc tính trong 1 bảng ghi
71
Bảng 3.5: Đánh giá kết quả của thuật toán
81

DANH SÁCH HÌNH VẼ
Hình 1.1: Báo cáo hàng năm về tình hình bảo mật của Cisco [27] 1
Hình 1.2: Kiến trúc mạng không dây [37] 2
Hình 1.3: Cơ chế bảo mật WEP
3
Hình 1.4: Tấn công Flooding
9
Hình 1.5: Tấn công Injection
10
Hình 1.6: Tấn công Impersonation
10
Hình 1.7: Các điểm trong không gian D chiều
11
Hình 1.8: Siêu phẳng phân lớp các điểm trong không gian
12
Hình 1.9 : Đồ thị biểu diễn các điểm trong mặt phẳng R+
13
Hình 1.10 : Các điểm lựa chọn cho siêu phẳng
13
Hình 1.11: Kiến trúc mô hình SVM
14
Hình 1.12: Đồ thị biểu diễn siêu phẳng tìm được
15
Hình 1.13: Kiến trúc chung của mạng nơ-ron
18
Hình 1.14: Mô hình mạng nơ-ron
19
Hình 1.15: Công thức và đồ thị hàm ngưỡng
20
Hình 1.16: Công thức và đồ thị hàm tuyến tính
20
Hình 1.17: Công thức và đồ thị hàm sigmod
21
Hình 1.18: Công thức và đồ thị hàm tanh
21
Hình 1.19: Công thức và đồ thị hàm gausian
22
Hình 2.1: Hình ảnh cây sau vòng lặp đầu tiên của thuật toán DT
30
Hình 2.2: Cây phân lớp sau vòng lặp thứ 2 của thuật toán DT
31
Hình 2.3: Cây phân lớp cuối cùng của thuật toán DT
32
Hình 2.4: Ví dụ về cây quyết định với phân lớp mờ và phân lớp rõ
33
Hình 2.5: Lớp rõ và lớp mờ
34
Hình 2.6: Đồ thị biểu diễn các miền giá trị
35
Hình 2.7: Mô hình thuật toán rừng ngẫu nhiên [3] 37
Hình 2.8: Cây RF 2 sau vòng lặp thứ nhất
40
Hình 2.9: Cây RF 2 sau vòng lặp thứ hai
42
Hình 2.10: Cây RF 2 hoàn chỉnh thứ nhất
42
Hình 2.11: Cây RF 3 sau vòng lặp 1
45
Hình 2.12: Cây RF 3 sau vòng lặp 2
46
Figure 2.13: Cây RF 3 hoàn thiện
46
Hình 2.14: Mô hình fuzzy random forest
51
Hình 2.15: Đồ thị miền giá trị mờ của outlook
55
Hình 2.16: Đồ thị miền giá trị mờ của temprature
56

Bảng 2.17: Đồ thị miền giá trị mờ của humidity
56
Hình 2.18: Đồ thị miền giá trị mờ của wind
57
Hình 2.19: Cấy FRF 1 sau vòng lặp đầu tiên
61
Hình 2.20: Cây FRF 1 sau vòng lặp 2
65
Hình 2.21: Cây FRF 1 sau vòng lặp 3
67
Hình 2.22: Cây FRF 1 sau vòng lặp 4
68
Hình 2.23: Cây FRF hoàn thiện
68
Hình 3.1: Dữ liệu sau khi chuyển sang hệ cơ số 10
77
Hình 3.2: Dữ liệu đã được xử lý
78
Hình 3.3: Nhãn cho tập thuộc tính
78
Hình 3.4: Vị trí các thuộc tính dùng để phân lớp
79
Hình 3.5: Khoảng giá trị cho từng thuộc tính
79
Hình 3.6: Đồ thị hàm singleton
79
Hình 3.7: Công thức và đồ thị hàm triangular
80
Hình 3.8: Công thức và đồ thị hàm trapezoidal
80
Hình 3.9: Công thức là đồ thị hàm hình thang phải
80
Hình 3.10: Công thức là đồ thị hàm hình thang trái
81
Hình 3.12: Cây sau khi chạy thuật toán
81
Hình 3.13: Đồ thị đánh giá độ chính xác của cây
82
Hình 3.14: Độ chính xác của từng lớp theo số cây theo precision
83
Hình 3.15: Độ chính xác của từng lớp theo số cây theo recall
83

DANH SÁCH TỪ VIẾT TẮT

STT
Từ viết tắt
Đầy đủ
Ý nghĩa
1
AP
Access Point
Điểm truy cập: là thiết bị cho phép
các thiết bị không dây kết nối với
mạng dây sử dụng WiFi hoặc các
chuẩn liên quan
2
ARP
Address Resolution
Protocol
Giao thức phân giải địa chỉ là một
giao thức truyền thông được sử dụng
để chuyển địa chỉ từ tầng mạng sang
tầng liên kết dữ liệu theo mô hình
OSI.
3
CCMP
Counter Mode Cipher
Block Chaining
Message
Authentication Code
Protocol
Giao thức CCMP là một giao thức
truyền dữ liệu và kiểm soát tính
truyền dữ liệu thống nhất để bảo đảm
cả tính bảo mật và nguyên vẹn của dữ
liệu được truyền đi
4
DoS
Denial-of-service
Cuộc tấn công từ chối dịch vụ (tấn
công DoS – hay tấn công từ chối dịch
vụ phân tán là một nỗ lực làm cho
những người dùng không thể sử dụng
tài nguyên của một máy tính
5
DT
Decision tree
Cây quyết định là một thuật toán
dùng để phân lớp dự liệu
6
FCS
Frame check sequence
Một mã phát hiện lỗi được thêm vào
một khung trong giao thức truyền
thông. Khung được sử dụng để gửi dữ
liệu tải trọng từ một nguồn đến đích.
7
FDT
Fuzzy decision tree
Cây quyết định mờ là thuật toán phân
lớp áp dụng lý thuyết mờ vào cây
quyết định

8
FRF
Fuzzy random forest
Rừng ngẫu nhiên mờ là thuật toán áp
dụng lý thuyết mờ vào rừng ngẫu
nhiên.
9
FTP
File Transfer Protocol
Giao thức truyền tập tin: thường được
dùng để trao đổi tập tin qua mạng
lưới truyền thông dùng giao thức
TCP/IP (chẳng hạn như Internet –
mạng ngoại bộ – hoặc Intranet – mạng
nội bộ)
10
HTTP
Hypertext Transfer
Protocol
Giao thức truyền tải siêu văn bản: là
một trong năm giao thức chuẩn của
mạng Internet, được dùng để liên hệ
thông tin giữa Máy cung cấp dịch vụ
và Máy sử dụng dịch vụ.
11
IEEE
The Institute of
Electrical and
Electronics Engineers
Viện kỹ nghệ Điện và Điện tử: là một
tổ chức phi lợi nhuận, chuyên nghiệp
nhằm nâng cao sự thịnh vượng qua sự
phát huy các đổi mới công nghệ tạo
cơ hội nghề nghiệp cho các thành
viên và cổ vũ cộng đồng thế giới mở
rộng
12
IoT
Internet of Thing
Internet Vạn Vật, hay cụ thể hơn là
Mạng lưới vạn vật kết nối Internet
hoặc là Mạng lưới thiết bị kết nối
Internet là một liên mạng, trong đó
các thiết bị, phương tiện vận tải (được
gọi là “thiết bị kết nối” và “thiết bị
thông minh”), phòng ốc và các trang
thiết bị khác được nhúng với các bộ
phận điện tử, phần mềm, cảm biến,
cơ cấu chấp hành cùng với khả năng
kết nối mạng máy tính giúp cho các

thiết bị này có thể thu thập và truyền
tải dữ liệu
13
IP
Internet Protocol
Giao thức Internet: là một địa chỉ đơn
nhất mà những thiết bị điện tử hiện
nay đang sử dụng để nhận diện và
liên lạc với nhau trên mạng máy tính
bằng cách sử dụng giao thức Internet.
14
MAC
Media Access Control
Điều khiển truy nhập môi trường: là
tầng con, một phần của tầng liên kết
dữ liệu trong mô hình 7 tầng OSI
15
NLP
Natural Language
Processing
Xử lý ngôn ngữ tự nhiên
16
OOB
Out of bag
Là phương pháp đo lỗi dự đoán của
random forest, decision tree .v.v..
17
RF
Random forest
Rừng ngẫu nhiên: Tương tự cây
quyết định là thuật toán dùng để phân
lớp
18
SSID
Service Set Identifier
Là tên chính của mạng cục bộ không
dây 802,11 gồm mạng gia đình và các
hotspot công cộng
19
STA
STAtion
Một thiết bị client trong mạng không
dây 802.11 như máy tính, máy tính
xách tay hoặc điện thoại thông minh.
Thuật ngữ STA đôi khi cũng được sử
dụng cho điểm truy cập, trong trường
hợp đó, STA là bất kỳ thiết bị nào
giao tiếp qua giao thức 802.11
20
TKIP
Temporal Key
Integrity Protocol
Là một giao thức bảo mật được sử
dụng trong chuẩn mạng không dây
IEEE 802.11

21
WLAN
Wireless LAN
Mạng cục bộ không dây (viết tắt từ
tiếng Anh: wireless local area
network) là mạng cục bộ gồm các
máy tính liên lạc với nhau bằng sóng
vô tuyến.

1 CHƯƠNG I: TỔNG QUAN BÀI TOÁN VÀ KIẾN THỨC NỀN
1.1 Đặt vấn đề
Ngày nay với sự phát triển của công nghệ và kinh tế, các thiết bị không dây như
điện thoại di động, máy tính xách tay, v.v. không ngừng gia tăng. Kèm theo đó là sự
phát triển của các hệ thống mạng không dây (WiFi) có mặt ở mọi nơi từ gia đình, các
công ty đến các địa điểm công cộng như quán ăn, quán café. Tốc độ phát triển của các
thiết bị không dây và mạng không dây đi kèm theo mối đe dọa từ an ninh mạng. Mỗi
ngày có hàng triệu giao dịch được thực hiện qua mạng. Chính vì sự phổ biến và tầm
quan trọng của nó như vậy mà vấn đề về bảo mật và an toàn cho mạng không dây được
đặt lên cao đặc biệt là ở những nơi quan trọng như ngân hàng hay cơ quan chính phủ.
Các cuộc tấn công mạng ngày các phổ biến làm thiệt hàng tỷ đô cho nền kinh tế.
Trên thế giới thiệt hại do các cuộc tấn công mạng lên đến 200 tỷ usd mỗi năm.
Theo Báo cáo An ninh mạng thường niên năm 2017 của Cisco, hơn 1/3 tổ chức từng bị
vi phạm an ninh trong năm 2016 chịu thiệt hại đáng kể do mất khách hàng, cơ hội và
doanh thu lên đến hơn 20% [5].

Hình 1.1: Báo cáo hàng năm về tình hình bảo mật của Cisco [27] Hơn nữa ngày nay với sự phát triển của IoT, các thiết bị kết nối internet, router wifi, trở
thành đích nhắm của các hacker. Chính vì vậy rất nhiều biện pháp được đưa ra để phòng
chống và ngăn chặn các hình thức tấn công mạng.

Do đó bài toán được đặt ra ở đây là xác định một truy cập là bình thường hay bất
thường, Hay đúng hơn là bài toán phân lớp một truy cập mạng theo các thuộc tính đã
biết.
Trong những năm gần đây với sự phát triển và hoàn thiện của các thuật toán học
máy, nó được ứng dụng trong rất nhiều ngành khác nhau. Trong lĩnh vực an ninh mạng
cũng tương với bài toán phân lớp xâm nhập mạng không dây việc áp dụng các thuật
toán học máy đem lại hiệu quả cao. Trong luận văn này thì sẽ tìm hiểu và áp dụng thuật
toán Fuzzy Random Forest cho bài toán này.
1.2 Tổng quan về mạng không dây
1.2.1 Kiến trúc mạng 802.11
802.11 là một tập các chuẩn của tổ chức IEEE bao gồm các đặc tả kỹ thuật liên
quan đến hệ thống mạng không dây. Chuẩn IEEE 802.11 mô tả một giao tiếp “truyền
qua không khí” sử dụng sóng vô tuyến để truyền nhận tín hiệu giữa một thiết bị không
dây và tổng đài hoặc điểm truy cập, hoặc giữa 2 hay nhiều thiết bị không dây với nhau
(mô hình ad-hoc) [6].

Hình 1.2: Kiến trúc mạng không dây [37] 802.11 cấu trúc gồm 3 thành phần chính: tầng quản lý, tầng điều khiển và tầng dữ
liệu [28].
Tầng quản lý: Đóng vai trò cài đặt giao tiếp giữa STA với AP và duy trì kết nối
[28].

Tầng điều khiển: Điều phối truy cập vào môi trường không dây và đóng vai trò
trong việc phân phối các khung dữ liệu từ STA đến AP và ngược lại [28].
Tầng dữ liệu: Được sử dụng để truyền tải thông tin thực tế được tạo ra từ các lớp
khác. Tất cả các khung dữ liệu đều có cùng cấu trúc bao gồm tiêu đề, thân khung và
khung kiểm tra. Chiều dài thân khung trong byte là biến duy nhất của 4byte trong phạm
vi từ 0 đến 2312 [28].
1.2.2 Cơ chế bảo mật
Wired Equivalent Privacy – WEP
WEP là một thuật toán bảo nhằm bảo vệ sự trao đổi thông tin chống lại sự nghe
lén, chống lại những nối kết mạng không được cho phép .v.v.. WEP sử dụng stream
cipher RC4 cùng với một mã 40bit và một số ngẫu nhiên 24bit (initialization vector –
IV) để mã hóa thông tin. Thông tin mã hóa được tạo ra bằng cách thực hiện operation
XOR giữa keystream và plain text [4].

Hình 1.3: Cơ chế bảo mật WEP
Do WEP sử dụng RC4, một thuật toán sử dụng phương thức mã hóa dòng, nên
cần một cơ chế đảm bảo hai dữ liệu giống nhau sẽ không cho kết quả giống nhau sau
khi được mã hóa hai lần khác nhau. Đây là một yếu tố quan trọng trong vấn đề mã hóa
dữ liệu nhằm hạn chế khả năng suy đoán khóa của hacker. Để đạt mục đích trên, một
giá trị có tên Initialization Vector (IV) được sử dụng để cộng thêm với khóa nhằm tạo
ra khóa khác nhau mỗi lần mã hóa. IV là một giá trị có chiều dài 24bit và được chuẩn
IEEE 802.11 đề nghị (không bắt buộc) phải thay đổi theo từng gói dữ liệu. Vì máy gửi
tạo ra IV không theo định luật hay tiêu chuẩn, IV bắt buộc phải được gửi đến máy nhận

ở dạng không mã hóa. Máy nhận sẽ sử dụng giá trị IV và khóa để giải mã gói dữ liệu
[4].
Cách sử dụng giá trị IV là nguồn gốc của đa số các vấn đề với WEP. Do giá trị
IV được truyền đi ở dạng không mã hóa và đặt trong header của gói dữ liệu 802.11 nên
bất cứ ai “tóm được” dữ liệu trên mạng đều có thể thấy được. Với độ dài 24 bit, giá trị
của IV dao động trong khoảng 16.777.216 trường hợp. Những chuyên gia bảo mật tại
đại học California-Berkeley đã phát hiện ra là khi cùng giá trị IV được sử dụng với cùng
khóa trên một gói dữ liệu mã hóa (khái niệm này được gọi nôm na là va chạm IV),
hacker có thể bắt gói dữ liệu và tìm ra được khóa WEP. Thêm vào đó, ba nhà phân tích
mã hóa Fluhrer, Mantin và Shamir đã phát hiện thêm những điểm yếu của thuật toán
tạo IV cho RC4. FMS đã vạch ra một phương pháp phát hiện và sử dụng những IV lỗi
nhằm tìm ra khóa WEP [4].
Thêm vào đó, một trong những mối nguy hiểm lớn nhất là những cách tấn công
thêm hai phương pháp nêu trên đều mang tính chất thụ động. Có nghĩa là kẻ tấn công
chỉ cần thu nhận các gói dữ liệu trên đường truyền mà không cần liên lạc với Access
Point. Điều này khiến khả năng phát hiện các tấn công tìm khóa WEP đầy khó thêm và
gần như không thể phát hiện được [4].
Hiện nay, trên Internet đã sẵn có những công cụ có khả năng tìm khóa WEP như
AirCrack, AirSnort, dWepCrack, WepAttack, WepCrack, WepLab. Tuy nhiên, để sử
dụng những công cụ này đòi hỏi nhiều kiến thức chuyên sâu và chúng còn có hạn chế
về số lượng gói dữ liệu cần bắt được [4].
Mặc dù các thuật toán được cải tiến và kích thước kí tự được tăng lên, qua thời
gian nhiều lỗ hổng bảo mật được phát hiện trong chuẩn WEP khiến nó càng ngày càng
dễ bị qua mặt khi mà sức mạnh của máy tính ngày càng được củng cố. Năm 2001, nhiều
lỗ hổng tiềm tàng đã bị phơi bày trên mạng Internet. Đến năm 2005, FBI công khai trình
diễn khả năng bẻ khóa WEP chỉ trong một vài phút bằng phần mềm hoàn toàn miễn phí
nhằm nâng cao nhận thức về sự nguy hiểm của WEP.
Mặc dù nhiều nỗ lực cải tiến được tiến hành nhằm tăng cường hệ thống của
WEP, chuẩn này vẫn đặt người dùng vào vị trí hết sức nguy hiểm và tất cả các hệ thống
sử dụng WEP nên được nâng cấp hoặc thay thế. Tổ chức Liên minh WiFi chính thức
cho WEP ngừng hoạt động vào năm 2004.

WiFi Protected Access – WPA
WiFi Protected Access là một chuẩn do liên minh WiFi đưa ra nhằm thay thế
cho WEP. Chuẩn này chính thức được áp dụng vào năm 2003, một năm trước khi WEP
được cho “nghỉ hưu”. Cấu hình WPA phổ biến nhất là WPA-PSK. WPA sử dụng mã
hóa 256-bit giúp tăng tính bảo mật lên rất nhiều so với 64-bit và 128-bit của WEP [7].
Một trong những yếu tố giúp WPA bảo mật tốt hơn là nó có khả năng kiểm tra
tính toàn vẹn của gói tin – tính năng giúp kiểm tra xem liệu hacker có thu thập hay thay
đổi gói tin truyền qua lại giữa điểm truy cập và thiết bị dùng WiFi hay không; và
Temporal Key Integrity Protocol, hệ thống kí tự cho từng gói, an toàn hơn rất nhiều so
với kí tự cố định của WEP. TKIP sau đó được thay thế bằng Advanced Encryption
Standard [7].
Mặc dù đã có nhiều cải tiến so với WEP nhưng “bóng ma” của người tiền nhiệm
một lần nữa lại ám ảnh WPA. Nguyên nhân nằm ở TKIP, một thành phần chủ chốt của
thuật toán mã hóa này. Liên minh WiFi đã thiết kế để có thể nâng cấp lên TKIP từ phiên
bản firmware của WEP và hacker có thể lợi dụng các điểm yếu của WEP để hack vào
thành phần này từ đó hack vào mạng WPA. Cũng giống như WEP, các tổ chức về bảo
mật đã chứng minh điểm yếu của WPA thông qua một loạt thử nghiệm. Một điểm thú
vị là các phương thức phổ biến nhất để hack WPA không phải là những cuộc tấn công
trực tiếp vào thuật toán này, mà thông qua 1 hệ thống bổ sung được phát hành cùng
WPA là WiFi Protected Setup (WPS – một hệ thống giúp liên kết thiết bị với các điểm
truy cập 1 cách dễ dàng) [7].
Wi-Fi Protected Access II
Đến năm 2006, WPA được thay thế bằng chuẩn mới là WPA2. Những thay đổi
đáng kể nhất của WPA2 so với người tiền nhiệm của nó là WPA2 sử dụng 1 thành phần
mới thay thế cho TKIP là có tên CCMP; đồng WPA2 yêu cầu phải sử dụng thuật toán
AES. Có thể nói rằng chuẩn WPA2 mới nhất này đã tăng khả năng bảo mật của router
WiFi lên cao nhất từ trước tới nay mặc dù nó vẫn còn 1 số lỗ hổng hơi khó hiểu. Tuy
nhiên bạn có thể hình dung về lỗ hổng này là nó yêu cầu hacker phải có quyền truy cập
được vào mạng WiFi trước sau đó chúng mới có thể tiến hành hack được vào các client
khác trong cùng mạng. Bởi thế, WPA2 có thể coi là chuẩn an toàn cho mạng WiFi gia

đình và với lỗ hổng trên, hacker chỉ có thể thâm nhập được vào mạng WiFi của các
doanh nghiệp (với rất nhiều thiết bị kết nối) mà thôi [7].
Ngoài ra, bạn nên lưu ý tắt tính năng WPS, hệ thống dễ bị tấn công trong WPA
và vẫn còn được lưu lại trong WPA2 nhằm tránh các nguy cơ bị tấn công, mặc dù việc
hack vào hệ thống này yêu cầu hacker phải mất từ 2 đến 14 tiếng thông qua một hệ
thống máy tính có năng lực tính toán cao. Bên cạnh đó, việc flash firmware (sử dụng
một bản firmware ngoài, không phải do nhà sản xuất router cung cấp) không hỗ trợ
WPS sẽ giúp cho WiFi của bạn được đảm bảo an toàn tuyệt đối [7].
1.2.3 Các dạng tấn mạng không dây
Có nhiều phương pháp để tấn công mạng không dây, một số phương pháp phổ
biến như:
Tấn công bị động:
Tấn công bị động hay nghe lén là kiểu tấn công không tác động trực tiếp vào
thiết bị nào trên mạng, không làm cho các thiết bị trên mạng biết được hoạt động của
nó vì thế kiểu tấn công này rất khó phát hiện. Các phương thức thường dùng trong tấn
công bị động như: nghe trộm, phân tích luồng thông tin. Sử dụng cơ chế bắt gói tin
Sniffing để lấy trộm thông tin khi đặt một thiết bị thu nằm trong vùng phủ sóng. Tấn
công kiểu bắt gói tin khó bị phát hiện ra sự có mặt của thiết bị bắt gói tin nếu thiết bị đó
không thực sự kết nối tới AP [8].
Có nhiều ứng dụng bắt gói tin có khả năng thu thập được password từ những địa
chỉ HTTP, email, phiên làm việc FTP, telnet. Những kiểu kết nối trên đều truyền
password theo dạng clear text (không mã hóa). Có nhiều ứng dụng có thể lấy được
password trên mạng không dây của quá trình trao đổi giữa Client và Server khi đang
thực hiện quá trình đăng nhập. Việc bắt gói tin giúp kẻ tấn công có thể nắm được thông
tin, phân tích được lưu lượng của mạng và nó còn gián tiếp làm tiền đề cho các phương
thức tấn công phá hoại khác [8].

Tấn công chủ động:
Tấn công chủ động là tấn công trực tiếp vào các thiết bị trên mạng như AP. Cuộc
tấn công chủ động có thể được dùng để tìm cách truy cập tới một server để thăm dò, lấy

những dữ liệu quan trọng, thậm chí làm thay đổi cấu hình cơ sở hạ tầng mạng. Kiểu tấn
công này dễ phát hiện nhưng khả năng phá hoại của nó rất nhanh. Kiểu tấn công cụ thể:
Mạo danh, truy cập trái phép [8].
Một trong những cách phổ biến là một máy tính tấn công bên ngoài giả mạo là
máy tính trong mạng rồi xin kết nối vào mạng để rồi truy cập trái phép nguồn tài nguyên
trên mạng. Hacker sẽ giả mạo địa chỉ MAC, địa chỉ IP của thiết bị mạng trên máy tính
của mình thành các giá trị của máy tính đang sử dụng trong mạng, làm cho hệ thống
hiểu nhầm và cho phép kết nối. Các thông tin về địa chị MAC, IP cần giả mạo có thể
thu thập được từ việc bắt trộm các gói tin trên mạng. Việc thay đổi địa chỉ MAC của
card mạng không dây có thể thực hiện dễ dàng trên hệ điều hành Windows, UNIX [8].
Tấn công kẻ ngồi giữa thao túng
Tấn công kiểu thu hút là trường hợp hacker sử dụng một AP giả mạo chèn vào
giữa hoạt động của các thiết bị, thu hút và giành lấy sự trao đổi thông tin của các thiết
bị về minh. AP chèn vào phải có vị trí, khả năng thu phát cao hơn nhiều so với AP hợp
pháp trong vùng phủ sóng của nó để làm cho các client kết nối lại với AP giả mạo này.
Với kiểu tấn công này thì người dùng khó có thể phát hiện được. Để tấn công thu hút,
hacker phải biết được giá trị SSID mà các client đang sử dụng và key WEP nếu mạng
có sử dụng WEP. Kết nối ngược từ AP trái phép được điều khiển thông qua một thiết
bị client như PC card hay workgroup bridge [8].
Tấn công thu hút có thể được thực hiện trên một laptop với 2 PCMCIA card.
Phần mềm AP chạy trên 1 laptop mà ở đó một PC card được sử dụng như một AP, 1PC
card dùng để kết nối laptop với AP hợp pháp. Lúc này latop trở thành kẻ ở giữa hoạt
động giữa client và AP hợp pháp. Hacker dùng kiểu tấn công này có thể lấy được các
thông tin giá trị bằng cách sử dụng các chương trình phân tích trên máy tính [8].
Tấn công xác thực lại
Kẻ tấn công xác định mục tiêu tấn công là các người dùng trong mạng WLAN
và các kết nối của họ đến AP. Sau đó sẽ chèn các frame yêu cầu xác thực lại vào mạng
WLAN bằng cách giả mạo địa chỉ MAC của AP và các người dùng. Người dùng khi
nhận được các frame yêu cầu xác thực lại sẽ hiểu nhầm là của AP gửi đến. Sau khi ngắt
được kết nối của một người dùng ra khỏi mạng WLAN, hacker tiếp tục thực hiện ngắt
kết nối với các người dùng còn lại. Sau khi bị ngắt kết nối, thông thường người dùng sẽ

kết nối lại để phục hồi dịch vụ, nhưng kẻ tấn công đã nhanh chóng tiếp tục gửi các gói
yêu cầu xác thực lại cho người dùng [8].
Tấn công giả mạo điểm truy cập
Tấn công giả mạo AP là kiểu tấn công man-in-the-middle cổ điển. Đây là kiểu
tấn công mà tin tặc đứng ở giữa và trộm lưu lượng truyền giữa hai nút. Kiểu tấn công
này rất mạnh vì tin tặc có thể trộm tất cả lưu lượng đi qua mạng. Rất khó khăn để tấn
công theo kiểu man-in-the-middle trong mạng có dây bời vì kiểu tấn công này yêu cầu
truy cập thực sự vào đường truyền. Trong mạng không dây thì lại dễ bị tấn công kiểu
này. Tin tặc sẽ tạo ra một AP giả mạo có cấu hình giống hệt như AP hợp pháp bằng
cách sao chép SSID, địa chỉ MAC.v.v.. của AP hợp pháp (những thông tin cấu hình của
AP hợp pháp có thể thu được bằng việc bắt các gói tin truyền trong mạng). Tin tặc phải
chắc chắn AP giả mạo có cường độ tín hiệu mạnh hơn cả so với AP hợp pháp bằng cách
đặt AP giả mạo gần với client hơn AP hợp pháp [8].
Bước tiếp theo là làm cho nạn nhân kết nối tới AP giả bằng cách đợi cho client
tự kết nối hoặc gây ra một cuộc tấn công DoS vào AP hợp pháp do vậy client sẽ phải
kết nối tới AP giả. Sau khi nạn nhân kết nối, nạn nhân vẫn hoạt động bình thường và
nếu nạn nhân kết nối tới một AP hợp pháp khác thì dữ liệu của nạn nhân đều đi qua AP
giả. Do đó, hacker có thể dùng các ứng dụng để thu thập các thông tin anh ta muốn.
Kiểu tấn công này tồn tại do trong 802.11 không yêu cầu chứng thực 2 hướng giữa AP
và client, AP phát quảng bá ra toàn mạng, rất dễ bị nghe trộm và ăn cắp thông tin bởi
hacker [8].
1.2.4 Các dấu hiệu tấn công mạng không dây
Có 3 loại dấu hiệu giúp chúng ta phát hiện được các điểm bất thường
Flooding Attacks: Loại tấn công này nhằm vào management frame thứ mà
không được bảo vệ trong 802.11, mặc dù 802.11 đã cố gắng để lấp lỗ hổng này.
Flooding attacks tạo ra một lượng tăng management frame đột ngột trên một đơn vị thời
gian. Nó là một dạng tấn công tiêu biểu trong trong tấn công DOS [28].
Hình dưới là một deauthentication attack trong các khoảng thời gian 1400 đến
1600 và 2800 đến 3000

Hình 1.4: Tấn công Flooding
Injection Attacks:
Tạo ra một loạt các khung dữ liệu được mã hóa hợp lệ có kích thước nhỏ
hơn.
Hình dưới ARP được thực hiện trên đó truyền một số lượng lớn các khung dữ
liệu nhỏ trong một khoảng thời gian lớn có lặp lại IVs để gợi lên phản ứng của mạng
[28].

Hình 1.5: Tấn công Injection
Impersonation Attacks:

Tạo ra một AP giả thường đi kèm với một cuộc tấn công hủy cấp phép để buộc
STA kết nối với AP riêng. Điểm chung của tất cả các cuộc tấn công mạo danh là số
lượng khung đèn hiệu xấp xỉ gấp đôi so với network victim [28].

Hình 1.6: Tấn công Impersonation
1.3 Giới thiệu một số thuật toán học máy
Trong vài năm trở lại đấy lĩnh vực trí tuệ nhân tạo nói chung và học máy nói
riêng phát triển cực kỳ mạnh vì khả năng ứng dụng của nó.
Học máy là một lĩnh vực của trí tuệ nhân tạo liên quan đến việc nghiên cứu và
xây dựng các kĩ thuật cho phép các hệ thống “học” tự động từ dữ liệu để giải quyết
những vấn đề cụ thể [9].
Theo Arthur Samuel (1959): Máy học là ngành học cung cấp cho máy tính khả
năng học hỏi mà không cần được lập trình một cách rõ ràng
Theo Giáo sư Tom Mitchell – Carnegie Mellon University: Machine Learning
là 1 chương trình máy tính được nói là học hỏi từ kinh nghiệm E từ các tác vụ T và với
độ đo hiệu suất P. Nếu hiệu suất của nó áp dụng trên tác vụ T và được đo lường bởi độ
đo P tăng từ kinh nghiệm E. Ngày nay học máy được ứng dụng rộng rãi trên nhiều lĩnh
vực và đem lại thành công lớn. Một số lĩnh vực áp dụng học máy thành công như: Xử
lý ngôn ngữ tự nhiên, Hệ thống gợi ý, Xử lý dữ liệu lớn, lĩnh vực robot, xe tự lái .v.v..

1.3.1 Support vector machine
Support vector machine là một khái niệm trong thống kê và khoa học máy tính
cho một tập hợp các phương pháp học có giám sát liên quan đến nhau để phân loại và
phân tích hồi quy [10].
Nguyên lý cơ bản của SVM là tìm một siêu phẳng phân hoạch tối ưu cho phép
chia các điểm trong không gian nhiều chiều thành 2 lớp nằm ở 2 phía chưa siêu phẳng
[37].
SVM dạng chuẩn nhận dữ liệu vào và phân loại chúng vào hai lớp khác nhau.
Do đó SVM là một thuật toán phân loại nhị phân.

Hình 1.7: Các điểm trong không gian D chiều
Cho trước n điểm trong không gian D chiều (mỗi điểm thuộc vào một lớp kí hiệu
là +1 hoặc -1), mục đích của giải thuật SVM là tìm một siêu phẳng phân hoạch tối ưu
cho phép chia các điểm này thành hai phần sao cho các điểm cùng một lớp nằm về một
phía với siêu phẳng này [10].
1
{( ,
) |
,
{ 1,1}}
p
n
i
i
i
i
i
D
x y
x
y
=
=

−
(1.1)
Mỗi siêu phẳng đều có thể được viết dưới dạng một tập hợp các điểm x thỏa
mãn:
0
w x
b


=
(1.2)
Công thức trên là tích vô hướng với vector pháp tuyến của siêu phẳng (w) và b
đóng vai trò là tham số.

Ta cần chọn w và b để cực đại hóa lề, hay khoảng cách giữa hai siêu mặt song
song ở xa nhau nhất có thể trong khi vẫn phân chia được dữ liệu [10] Các siêu mặt ấy được xác định bằng:

1
w x
b


=
(1.3)

1
w x
b
−
= − (1.4)

Hình 1.8: Siêu phẳng phân lớp các điểm trong không gian
Ví dụ:
Giả sử ta có một tập được gán nhãn (+1): {(3,1), (3, -1), (6, 1), (6, -1)}
Và tập các điểm được gán nhãn âm (-1): {(1, 0), (0, 1), (0, -1), (-1, 0)}
trong mặt phẳng R+ [33].

Hình 1.9 : Đồ thị biểu diễn các điểm trong mặt phẳng R+

Ta sử dụng SVM để phân biệt hai lớp (+1 và -1). Bởi vì dữ liệu được chia
tách một cách tuyến tính, nên chúng ta sử dụng một hàm tuyến tính để phân tách 2 lớp.
Theo quan sát, ta chọn ra ba vector hỗ trợ để thực thi các phép toán nhằm tìm ra mặt
phẳng phân tách tối ưu nhất [33]:

{s1 = (1,0), s2 = (3,1), s3 = (3, -1)}

Hình 1.10 : Các điểm lựa chọn cho siêu phẳng
Các vector hỗ trợ được tăng cường bằng cách thêm 1. Tức là s1 = (1,0), thì nó
sẽ được chuyển đổi thành s = (1, 0, 1). Theo kiến trúc SVM, Nhiệm vụ là tìm ra những
giá trị αi.
1
1
1
2
2
1
3
3
1
( )
( )
(
)
( )
( )
( )
1
s
s
s
s
s
s





+


+


= − (1.5)
1
1
2
2
2
2
3
3
2
( )
(
)
(
)
(
)
( )
(
)
1
s
s
s
s
s
s





+


+


= − (1.6)
1
1
3
2
2
3
3
3
3
( )
( )
(
)
( )
( )
( )
1
s
s
s
s
s
s





+


+


= − (1 .7)

Hình 1.11: Kiến trúc mô hình SVM

Đánh giá post

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *